Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Affect Disord ; 303: 187-195, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1676788

ABSTRACT

OBJECTIVE: The microbiota-gut-brain axis is a key pathway perturbed by prolonged stressors to produce brain and behavioral disorders. Frontline healthcare workers (FHWs) fighting against COVID-19 typically experience stressful event sequences and manifest some mental symptoms; however, the role of gut microbiota in such stress-induced mental problems remains unclear. We investigated the association between the psychological stress of FHW and gut microbiota. METHODS: We used full-length 16S rRNA gene sequencing to characterize the longitudinal changes in gut microbiota and investigated the impact of microbial changes on FHWs' mental status. RESULTS: Stressful events induced significant depression, anxiety, and stress in FHWs and disrupted the gut microbiome; gut dysbiosis persisted for at least half a year. Different microbes followed discrete trajectories during the half-year of follow-up. Microbes associated with mental health were mainly Faecalibacterium spp. and [Eubacterium] eligens group spp. with anti-inflammatory effects. Of note, the prediction model indicated that low abundance of [Eubacterium] hallii group uncultured bacterium and high abundance of Bacteroides eggerthii at Day 0 (immediately after the two-month frontline work) were significant determinants of the reappearance of post-traumatic stress symptoms in FHWs. LIMITATIONS: The lack of metabolomic evidence and animal experiments result in the unclear mechanism of gut dysbiosis-related stress symptoms. CONCLUSION: The stressful event sequences of fighting against COVID-19 induce characteristic longitudinal changes in gut microbiota, which underlies dynamic mental state changes.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Stress Disorders, Post-Traumatic , Animals , Dysbiosis/epidemiology , Dysbiosis/microbiology , Feces/microbiology , Health Personnel , Humans , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
2.
Cell Rep ; 32(3): 107915, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-626968

ABSTRACT

Coronaviruses cause several human diseases, including severe acute respiratory syndrome. The global coronavirus disease 2019 (COVID-19) pandemic has become a huge threat to humans. Intensive research on the pathogenic mechanisms used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is urgently needed-notably to identify potential drug targets. Clinical studies of patients with COVID-19 have shown that gastrointestinal disorders appear to precede or follow the respiratory symptoms. Here, we review gastrointestinal disorders in patients with COVID-19, suggest hypothetical mechanisms leading to gut symptoms, and discuss the potential consequences of gastrointestinal disorders on the outcome of the disease. Lastly, we discuss the role of the gut microbiota during respiratory viral infections and suggest that targeting gut dysbiosis may help to control the pathogenesis of COVID-19.


Subject(s)
Coronavirus Infections/pathology , Gastrointestinal Diseases/pathology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/pathology , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/physiology , COVID-19 , Dysbiosis/drug therapy , Dysbiosis/pathology , Gastrointestinal Diseases/virology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL